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GWAS I 

 We now know how to assess the null hypothesis as to 

whether a polymorphism has a causal effect on our 

phenotype 

 Occasionally we will assess this hypothesis for a single 

genotype 

 In quantitative genomics, we generally do not know the 

location of causal polymorphisms in the genome 

 We therefore perform a hypothesis test of many 

genotypes throughout the genome 

 This is a genome-wide association study (GWAS) 



GWAS II 

 Analysis in a GWAS raises (at least) two issues we have 

not yet encountered: 

- An analysis will consist of many hypothesis tests (not 

just one) 

- We often do not test the causal polymorphism 

(usually) 

 

 Note that this latter issue is a bit strange (!?) - how do we 

assess causal polymorphisms if we have not measured 

the causal polymorphism? 



Solution: correlation among 

genotypes 

 If we test a (non-causal) genotype 

that is correlated with the causal 

genotype AND if correlated 

genotypes are in the same 

position in the genome THEN we 

can identify the genomic position 

of the casual genotype. 

 This is the case in genetic 

systems. 

 Do we know which genotype is 

causal in this scenario? 



GWAS III 

 For a typical GWAS, we have a phenotype of interest 

and we do not know any causal polymorphisms (loci) 

that affect this phenotype (but we would like to find 

them!) 

 In an “ideal” GWAS experiment, we measure the 

phenotype and N genotypes THROUGHOUT the 

genome for n independent individuals. 

 To analyze a GWAS, we perform N independent 

hypothesis tests. 

 When we reject the null hypothesis, we assume that we 

have located a position in the genome that contains a 

causal polymorphism (not the causal polymorphism!), 

hence a GWAS is a mapping experiment 



Manhattan Plot 

 We will consider a number of visualization tools for 

analyzing GWAS data 

 For the moment, we will introduce the Manhattan plot 

 This is a plot of genotypes on the x-axis and on the y-

axis the -log p-values (base 10) (why?) resulting from 

each hypothesis test of each genotype 

 Each “point” on the plot is therefore a single p-value 

corresponding to a single measured genotype 

 We are looking for sets of points with high -log p-value = 

the position of a causal polymorphism 



Manhattan plot: examples 



GWAS Definitions 

 Association analysis - any analysis involving a statistical 

assessment of a relation between genotype and phenotype, e.g. a 

hypothesis test involving a multiple regression model 

 Mapping analysis - an association analysis 

 Linkage disequilibrium (LD) mapping - an association analysis 

(we will define LD next lecture) 

 Segregating - any locus where there is more than one allele in the 

population 

 Genetic marker - any segregating polymorphism we have 

measured in a GWAS, i.e. SNPs genotyped in a GWAS 

 Tag SNP - a SNP correlated with a causal polymorphism 

 Locus or Genetic Locus - a position in the genome (which may 

refer to a single polymorphism or an entire genomic segment, e.g. 

that contains the coding region of a gene 



Issues for successful mapping of 

causal polymorphisms in GWAS 

 For GWAS, we are generally concerned with correctly 

identifying the position of as many causal polymorphisms 

as possible (True Positives) while minimizing the number 

of cases where we identify a position where we think 

there is a causal polymorphism but there is not (False 

Positive) 

 We are less concerned with cases where there is a 

causal polymorphism but we do not detect it. 

 Issues that affect the number of True Positives and 

False Positives that we identify in a GWAS can be 

statistical and experimental (or a combination) 



Statistical Issues 1: Type 1 error 

 Recall that Type 1 error is the probability of incorrectly 

rejecting the null hypothesis when it is correct 

 A Type 1 error in a GWAS produces a false positive 

 We can control Type 1 error by setting it to a specified 

level but recall there is a trade-off: if we set it to low, we 

will not make a Type 1 error but we will also never reject 

the null hypothesis, even when it is wrong (e.g. if Type 1 

error is to low, we will not detect ANY causal 

polymorphisms) 

 In general we like to set a conservative Type 1 error for a 

GWAS 

 To do this, we have to deal with the multiple testing 

problem 



Statistical Issues II: Multiple Testing 

 Recall that when we perform a GWAS, we perform N 

hypothesis tests (where N is the number of measured 

genotype markers) 

 Also recall that if we set a Type 1 error to a level (say 

0.05) this is the probability of incorrectly rejecting the null 

hypothesis 

 If we performed N tests that were independent, we would 

therefore expect to incorrectly reject the null N*0.05 and 

if N is large, we would therefore make LOTS of errors  

 This is the multiple testing problem = the more tests we 

perform he greater the probability of making a Type 1 

error 



Correcting for multiple tests I 

 Since we can control the Type I error, we can correct for 

the probability of making a Type 1 error due to multiple 

tests 

 There are two general approaches for doing this in a 

GWAS: those that involve a Bonferroni correction and 

those that involve a correction based on the estimate the 

False Discovery Rate (FDR) 

 Both are different techniques for controlling Type 1 error 

but in practice, both set the Type I error to a specified 

level. 



Bonferroni corrections 

 A Bonferroni correction sets the Type I error for the 

entire GWAS using the following approach: for a desired 

type 1 error set the Bonferroni Type 1 error to the 

following: 

 

 

 We therefore use the Bonferroni Type I error to asses 

each of our N tests in a GWAS 

 For example, if we have N=100 in our GWAS and we 

want an overall GWAS Type I error of 0.05, thus we 

require a test to have a p-value of 0.0005 to be 

considered significant  



False Discovery Rate (FDR) 

 For N tests and specified Type I error, the FDR is 

defined as the number of cases where the null 

hypothesis is rejected R: 

 Intuitively, the FDR is the proportion of cases where we 

reject the null hypothesis that are false positives 

 

 

 We can estimate the FDR for a GWAS, e.g. say for 

N=100,000 tests and a Type I error of 0.05, we reject the 

null hypothesis 10,000 times, the FDR = 0.5 

 FDR methods for controlling for multiple tests (e.g. 

Benjamini-Hochberg) set the Type 1 error to control the 

FDR to a specific level, say FDR=0.01. 



Correcting for multiple tests II 

 Since the lower the Type 1 error the lower the power of 

our test, if we set the Type 1 error too low due to a very 

large N, we might not get any hits even when there are 

clear causal polymorphisms. 

 In general, a Bonferroni correction sets a lower overall 

GWAS Type I error than FDR approaches (what are the 

trade-offs and why would we choose one over the 

other?) 

 Both Bonferroni and FDR approaches make the implicit 

assumption that all tests are independent (which we 

know not to be the case in GWAS!) 



Experimental issues that produce 

false positives 

 Type 1 errors can produce a false positives (= places we 

identify in the genome as containing a causal 

polymorphism / locus that do not) 

 However, there are experimental reasons why we 

cancorrectly reject the null hypothesis (= we do not make 

a Type 1 error) but we still get a false positive: 

- Cases of disequilibrium when there is no linkage 

- Genotyping errors 

- Unaccounted for covariates (upcoming lectures) 

- There are others... 



Combined statistical / experimental 

issues that affect power I 

 Recall that power is defined as the probability of 

correctly rejecting the null hypothesis when it is false  

 Also recall that we cannot control power directly because 

it depends on the true parameter value(s) that we do not 

know! 

 Also recall that we can indirectly control power by setting 

our Type 1 error, where there is a trade-off between 

Type 1 error and power (what is this trade-off!?) 

 There are also a number of issues that affect power that 

are a function of the GWAS experiment 



Combined statistical / experimental 

issues that affect power II 

 Power tends to increase with the increasing size of the 

true effect of the genotype on phenotype  

 Power tends to increase with increasing sample size n 

 Power tends to increase as the Minor Allele Frequency 

(MAF) increases 

 Power tends to increase as the LD between a causal 

polymorphism and the genotype marker being tested 

increases (i.e. as the correlation between the causal and 

marker genotype increase) 

 Power also depends on other factors including the type 

of statistical test applied, etc. 

 Can any of these be controlled? 



An issue specific to GWAS: 

resolution 

 Resolution - the region of the genome indicated by significant tests 

for a set of correlated markers in a GWAS 

 Recall that we generally consider a set of contiguous significant 

markers (a “skyscraper” on a Manhattan plot) to indicate the location 

of a single causal polymorphism (although it need not indicate just 

one!) 

 Note that the marker with the most significant p-value within a set is 

not necessarily closest to the causal polymorphism 

 In practice, we often consider a set of markers with highly significant 

p-values to span the region where a causal polymorphism is located  

 In general, resolution in a GWAS is limited by the level of LD, which 

means there is a trade-off between resolution and the ability to map 

causal polymorphisms and that there is a theoretical limit to the 

resolution of a GWAS experiment  



That’s it for now 

 After the  two week break: We will continue with 

generalized linear models as well as more methods in 

statistical genetics such as case & control studies. 


